## AI-Mg-Nd (Aluminum-Magnesium-Neodymium)

V. Raghavan

Among the previous work on this system, [1981Zar] determined a partial isothermal section at 400 °C for Nd concentration up to 33.3 at.%. More recently, [1988Odi] determined a full isothermal section at 400 °C. [1996Odi] constructed a liquidus projection and several pseudobinary sections in the Al-Mg-NdAl<sub>2</sub> region.

## **Binary Systems**

The Al-Mg phase diagram [1998Lia] has the following intermediate phases: Mg<sub>2</sub>Al<sub>3</sub> (cubic, labeled  $\beta$ ), R or  $\epsilon$  (rhombohedral), and Mg<sub>17</sub>Al<sub>12</sub> (A12,  $\alpha$ Mn-type cubic, denoted  $\gamma$ ). The Al-Nd phase diagram reassessed with new additional experimental input by [2005Gao] shows the following intermediate compounds: Nd<sub>3</sub>Al (D0<sub>19</sub>, Ni<sub>3</sub>Sn-type hexagonal), Nd<sub>2</sub>Al (C23, Co<sub>2</sub>Si-type orthorhombic), NdAl (ErAl-type orthorhombic), NdAl<sub>2</sub> (C15, MgCu<sub>2</sub>-type cubic),  $\alpha$ NdAl<sub>3</sub> (Ni<sub>3</sub>Sn-type hexagonal),  $\beta$ NdAl<sub>3</sub> (stable between 1205 and 888 °C), NdAl<sub>4</sub> or  $\beta$ Nd<sub>3</sub>Al<sub>11</sub> (D1<sub>3</sub>, Al<sub>4</sub>Ba-type tetragonal), and  $\alpha$ Nd<sub>3</sub>Al<sub>11</sub> ( $\alpha$ La<sub>3</sub>Al<sub>11</sub>-type orthorhombic). The Mg-Nd phase diagram [2005Gor] depicts the following intermediate phases: Mg<sub>41</sub>Nd<sub>5</sub> (Mg<sub>41</sub>Ce<sub>5</sub>-type

tetragonal),  $Mg_3Nd$  ( $D0_3$ ,  $BiF_3$ -type cubic),  $Mg_2Nd$  (C15,  $MgCu_2$ -type cubic), and MgNd (B2, CsCl-type cubic).

## **Ternary Phase Equilibria**

With starting metals of 99.995% Al, 99.95% Mg and 99.98% Nd, [1988Odi] arc-melted 87 alloys and annealed them at 400 °C for 480 h. The phase equilibria were studied mainly by x-ray powder diffraction. The isothermal section at 400 °C constructed by [1988Odi] is redrawn in Fig. 1 to comply with the accepted binary data. Mg<sub>2</sub>Nd is not stable at 400 °C. It is possible that the phase based on Mg<sub>2</sub>Nd (labeled  $\lambda$  here) is stable in the ternary region only. The phase relationships in this region shown in Fig. 1 are tentative. A ternary compound Al<sub>2</sub>Mg<sub>0.88</sub>Nd<sub>0.12</sub> (denoted  $\tau$ in Fig. 1) is stable at this temperature. It has the MgZn<sub>2</sub>-type hexagonal structure, with the lattice parameters of a = 0.5526 nm and c = 0.8922 nm [1988Odi].

In addition to the alloys used by [1988Odi], more recently [1996Odi] prepared 60 more alloys by the same procedure. The phase equilibria were studied with metallography, differential thermal analysis, and x-ray powder



Fig. 1 Al-Mg-Nd isothermal section at 400 °C [1988Odi]. Narrow two-phase regions are omitted



Fig. 2 Al-Mg-Nd pseudobinary section along the Al- $\tau$  join [1996Odi]



Fig. 3 Al-Mg-Nd pseudobinary section along the NdAl<sub>2</sub>-Mg join [1996Odi]



Fig. 4 Al-Mg-Nd liquidus projection in the Al-Mg-NdAl<sub>2</sub> region [1996Odi]

diffraction. Four pseudobinary sections of the simple eutectic type were determined by [1996Odi] along Al- $\tau$ ,  $\tau$ -Mg<sub>2</sub>Al<sub>3</sub>,  $\tau$ -Mg<sub>17</sub>Al<sub>12</sub>, and NdAl<sub>2</sub>-Mg joins. The sections along Al- $\tau$  and NdAl<sub>2</sub>-Mg joins are redrawn in Fig. 2 and 3. The eutectic temperatures for the  $\tau$ -Mg<sub>2</sub>Al<sub>3</sub> and  $\tau$ -Mg<sub>17</sub>Al<sub>12</sub> sections (not shown here) are 439 and 440 °C, respectively. The eutectic compositions are 75 mol% Mg<sub>2</sub>Al<sub>3</sub> and 62 mol% Mg<sub>17</sub>Al<sub>12</sub>, respectively [1996Odi].

The liquidus projection determined by [1996Odi] for the Al-Mg-NdAl<sub>2</sub> region is redrawn in Fig. 4. The final solidification in the Al-Mg<sub>2</sub>Al<sub>3</sub>- $\tau$ , Mg<sub>2</sub>Al<sub>3</sub>-Mg<sub>17</sub>Al<sub>12</sub>- $\tau$ , Mg<sub>17</sub>Al<sub>12</sub>-Mg-Nd<sub>3</sub>Al<sub>11</sub>, Al-Nd<sub>3</sub>Al<sub>11</sub>- $\tau$ , and Mg<sub>17</sub>Al<sub>12</sub>-Nd<sub>3</sub>Al<sub>11</sub>- $\tau$  subregions are through ternary eutectic reactions E<sub>1</sub>, E<sub>2</sub>, E<sub>3</sub>, E<sub>4</sub>, and E<sub>5</sub> respectively, all occurring between 435 and 438 °C.

## References

- 1981Zar: O.S. Zarechnyuk, V.V. Kinzhibalo, A.T. Tyvanchuk, and R.M. Rykhal, X-ray Diffraction Study of the Mg-Al-La and Mg-Al-Nd Systems in the Range 0-33.3 at.% REM, *Metally*, 1981, (5), p 221-223, in Russian; TR: *Russ. Metall.*, 1981, (5), p 173-175
- **1988Odi:** Kh.O. Odinaev, I.N. Ganiev, V.V. Kinzhibalo, and A.T. Tyvanchuk, Phase Diagram of the Al-Mg-Nd System at 673 K, *Tsvetn. Metall.*, 1988, (4), p 94-97, in Russian
- **1996Odi:** Kh.O. Odinaev, I.N. Ganiev, and A.Z. Ikromov, The Pseudobinary Sections and the Liquiuds Surface of the Al-Mg-NdAl<sub>2</sub> System, *Metally*, 1996, (4), p 168-173, in Russian; TR: *Russ. Metall.*, 1996, (4), p 153-156
- 1998Lia: P. Liang, H.L. Su, P. Donnadieu, M. Harmelin, A. Quivy, P. Ochin, G. Effenberg, H.J. Seifert, H.L. Lukas,

and F. Aldinger, Experimental Investigation and Thermodynamic Calculation of the Central Part of the Mg-Al Phase Diagram, Z. Metallkd., 1998, **89**(8), p 536-540

**2005Gao:** M.C. Gao, N. Unlu, G.J. Shiflet, M. Mihalkovic, and M. Widom, Reassessment of Al-Ce and Al-Nd Binary Systems Supported by Critical Experiments and First-Principles Energy Calculations, Metall. Mater. Trans. A, 2005, **36A**, p 3269-3279

**2005Gor:** S. Gorsse, C.R. Hutchinson, B. Chevalier, and J.F. Nie, A Thermodynamic Assessment of the Mg-Nd Binary System Using Random Solution and Associate Models for the Liquid Phase, *J. Alloys Compd.*, 2005, **392**, p 253-262